1 Solve the equation
$$\frac{5x}{2x+1} - \frac{3}{x+1} = 1.$$
 [5]

2 Express
$$\frac{3x}{(2-x)(4+x^2)}$$
 in partial fractions. [5]

3 Solve the equation
$$\frac{4x}{x+1} - \frac{3}{2x+1} = 1.$$
 [5]

[5]

4 Express
$$\frac{1}{(2x+1)(x^2+1)}$$
 in partial fractions.

5 Express
$$\frac{x}{x^2-1} + \frac{2}{x+1}$$
 as a single fraction, simplifying your answer. [3]

6 Find the first three terms in the binomial expansion of 4 + x in ascending powers of x.
State the set of values of x for which the expansion is valid. [5]

7 (i) Express
$$\frac{3}{(y-2)(y+1)}$$
 in partial fractions. [3]

(ii) Hence, given that x and y satisfy the differential equation

$$\frac{dy}{dx} = x^2(y-2)(y+1),$$
show that $\frac{y-2}{y+1} = Ae^{x^3}$, where A is a constant. [5]

8 Express $\frac{x}{x^2 - 4} + \frac{2}{x + 2}$ as a single fraction, simplifying your answer. [3]

9 (i) Find the first three non-zero terms of the binomial series expansion of $\frac{1}{\sqrt{1+4x^2}}$, and state the set of values of x for which the expansion is valid. [5]

(ii) Hence find the first three non-zero terms of the series expansion of $\frac{1-x^2}{\sqrt{1+4x^2}}$. [3]

10 Two students are trying to evaluate the integral $\int_{1}^{2} \sqrt{1 + e^{-x}} \, dx$.

Sarah uses the trapezium rule with 2 strips, and starts by constructing the following table.

x	1	1.5	2
$\sqrt{1 + e^{-x}}$	1.1696	1.1060	1.0655

(i) Complete the calculation, giving your answer to 3 significant figures. [2]

Anish uses a binomial approximation for $\sqrt{1 + e^{-x}}$ and then integrates this.

- (ii) Show that, provided e^{-x} is suitably small, $\left(1+e^{-x}\right)^{\frac{1}{2}} \approx 1+\frac{1}{2}e^{-x}$ $\frac{1}{8}e^{-2x}$. [3]
- (iii) Use this result to evaluate $\int_{1}^{2} \sqrt{1 + e^{-x}} dx$ approximately, giving your answer to 3 significant figures. [3]