1 Solve the equation $\frac{5 x}{2 x+1}-\frac{3}{x+1}=1$.

2 Express $\frac{3 x}{(2-x)\left(4+x^{2}\right)} \quad$ in partial fractions.

3 Solve the equation $\frac{4 x}{x+1}-\frac{3}{2 x+1}=1$.
[5]

4 Express $\frac{1}{(2 x+1)\left(x^{2}+1\right)}$ in partial fractions.

5 Express $\frac{x}{x^{2}-1}+\frac{2}{x+1}$ as a single fraction, simplifying your answer.

6 Find the first three terms in the binomial expansion of $\overline{4+x}$ in ascending powers of x. State the set of values of x for which the expansion is valid.
(i) Express $\frac{3}{(y-2)(y+1)}$ in partial fractions.
(ii) Hence, given that x and y satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}(y-2)(y+1) \tag{5}
\end{equation*}
$$

show that $\frac{y-2}{y+1}=A \mathrm{e}^{x^{3}}$, where A is a constant.

8 Express $\frac{x}{x^{2}-4}+\frac{2}{x+2}$ as a single fraction, simplifying your answer.

9 (i) Find the first three non-zero terms of the binomial series expansion of $\frac{1}{\sqrt{1+4 x^{2}}}$, and state the set of values of x for which the expansion is valid.
(ii) Hence find the first three non-zero terms of the series expansion of $\frac{1-x^{2}}{\sqrt{1+4 x^{2}}}$.

10 Two students are trying to evaluate the integral $\int_{1}^{2} \sqrt{1+\mathrm{e}^{-x}} \mathrm{~d} x$.

Sarah uses the trapezium rule with 2 strips, and starts by constructing the following table.

x	1	1.5	2
$\sqrt{1+\mathrm{e}^{-x}}$	1.1696	1.1060	1.0655

(i) Complete the calculation, giving your answer to 3 significant figures.

Anish uses a binomial approximation for $\sqrt{1+\mathrm{e}^{-x}}$ and then integrates this.
(ii) Show that, provided e^{-x} is suitably small, $\left(1+\mathrm{e}^{-x}\right)^{\frac{1}{2}} \approx 1+\frac{1}{2} \mathrm{e}^{-x} \quad \frac{1}{8} \mathrm{e}^{-2 x}$.
(iii) Use this result to evaluate $\int_{1}^{2} \sqrt{1+\mathrm{e}^{-x}} \mathrm{~d} x$ approximately, giving your answer to 3 significant figures.

